Yhtälöt

Yhtälö. Johdanto

Yhtälössä on yhtäsuuruusmerkki $=$.

Lue lisää: yhtälö.
Esimerkki 1
a) $2 + 3 = 5$ aina tosi yhtälö
b) $2+3 =10$ aina epätosi yhtälö
c) $x + 3 = 5$ ehdollinen yhtälö, joka toteutuu ainoastaan, kun muuttuja $x = 2$.
Esimerkki 2
Tutkitaan, toteuttaako kumpikaan luvuista a) $x =1$ tai b) $x =-2$ yhtälöä $5x +1=-9$.
a) Sijoitetaan yhtälöön $x$:n paikalle luku $1$:
$5\times1+1= 6 \neq 9$ Luku $1$ ei toteuta yhtälöä.
b) Sijoitetaan yhtälöön luku $–2$:
$5 \times (-2) +1= -10 +1=-9$ Luku $–2$ toteuttaa yhtälön.
Esimerkki 3
Vaaka on tasapainossa. Mikä on $x$:llä merkityn kappaleen massa, kun pienen kuution massa on $1$ kg?

Ratkaisu:

Kirjoitetaan tilanteesta yhtälö sievennetyssä muodossa.
Vastaus: Kappaleen $x$ massa on $4$ kg.
1
Päättele puuttuva luku.
a) $\circledS+ 3 = 8$
b) $ \Bbbk- 2 = -6$
c) $1 - \Finv = 4$
d) $–10 - \beth = 2$
2
Kirjoita edellinen tehtävä yhtälöinä merkitsemällä puuttuvaa lukua $x$-kirjaimella.
3
Päättele puuttuva luku.
a) $2\times \circledS = 8$
b) $5\times \Finv =15$
c) $\frac{\Finv}3=5$
d) $\frac{\circledS}6=3$
4
Kirjoita edellinen tehtävä yhtälöinä merkitsemällä puuttuvaa lukua $x$-kirjaimella.
5
Onko $x =-2$ yhtälön ratkaisu?
a) $ 4x +1=-7$
b) $ x +17 =19$
c) $ -2x +5 =9$
d) $-x +6 =-2x -12$
6
Kuvaa vaakaa yhtälöllä.
7
Ratkaise edellisen tehtävän yhtälöt päättelemällä.
8
”Nueve” on eräs numero espanjaksi. Jos lisäät lukuun ”nueve” luvun $3$, saat summaksi $12$. Mikä luku on ”nueve”?
9
Tutki onko yhtälön $x^2+x=2$ ratkaisu
a) $x =1$
b) $x =0$
c) $x =-2$
d) $x =2$
10
Päättele, millä $x$:n arvolla lausekkeet $2x$ ja $5x$ saavat saman arvon.
11
Päättele, millä $x$:n arvolla yhtälö toteutuu.
a) $2x = 6$
b) $x + 4 =10$
c) $-x +1= 7$
d) $4- x = 2+ x$
12
Ratkaise yhtälö päättelemällä.
a) $5x = 0$
b) $3x = 33$
c) $6y = -6$
d) $\frac8y=2$
13
Erään kolmion kaikki kulmat ovat saman suuruisia. Muodosta kolmion kulmien suuruksista yhtälö, jonka avulla voidaan ratkaista yhden kulman suuruus. Ratkaise yhtälö päättelemällä.
14
Piirrä vaakamalli yhtälölle $6x + 3= 4x - 5$ ja ratkaise yhtälö sen avulla.
15
Ratkaise yhtälöt päättelemällä.
a) $x\times 4^\circ \text C = 36^\circ \text C$
b) $\frac{16 \text{ dl}}2 = 2$
c) $150 \text { kg} – x = 23 \text { kg}$
29. Vaa’at ovat tasapainossa. Ratkaise $x$:llä merkityn kappaleen massa, kun pienen kuution paino on 1 kg.
16
Keksi sanallinen tehtävä, johon liittyy yhtälö $x + 5 = 55$.
17
Kaikki vaa’at ovat tasapainossa. Päättele montako kuutiota on $x$ vastaa?
34. The scales are balanced. Work out the weight of the object $x$ in each case. Each small weight is 1 kg.
18
Päättele, millä $x$:n arvolla lauseke $2x + 1$ saa arvon nolla?
19
Ratkaise $x$.
a) $\frac{2x}3=6$
b) $3x + 1 = 19$
20
Päättele, millä $x$:n arvolla lausekkeet $2x + 4$ ja $3x =1$ saavat saman arvon? DESMOS.
21
Russel has two bags of sweets, each of which contains the same number of sweets. He eats eight sweets. Then he has $30$ sweets left. How many sweets were in each bag to start with?
37. Kuutio, pallo ja kartio ovat painoja. Jos kuutio painaa 6 kg, paljonko painavat pallo ja kartio?
22
Kuutio, pallo ja kartio ovat painoja. Jos pallo painaa 4 kg, paljonko painavat kuutio ja kartio?
23
Mitkä seuraavista luvuista ovat yhtälön $\frac{2x+3}{4x+5}=1$ juuria: $4/3$, $-4/3$, $1$, $-1$, $2/3$, $-2/3$? (yo kevät 1987)
24
Miten luku a on valittava, jotta yhtälön $ax^2 + x - 4 = 0 $ toisena juurena on $-4$? (yo syksy 1991)